t cht lk advantage as it allows for the cooling of the system without activation of the compressor .
The adiabatic technology can additionally improve the efficiency of a chilled water system . In these systems , the ambient air is cooled down by passing through wet pads . The air is then delivered at a lower temperature , achieving a higher free cooling capacity of the chiller and a more efficient operation of the compressor . The core of this solution is the onboard controller of the unit : it enables the use of water whenever strictly needed , according either to redundancy , efficiency or cooling demand needs . The controller has the main responsibility in preventing water from being wasted , improving the WUE ( water usage effectiveness ) of the data centre . The application of water is always a matter of balancing different aspects and constraints .
Further improvements to data centre efficiency can be made through the optimisation of chilled water systems controls . Chilled plant manager technology can co-ordinate the operation of all the units and main components of the chilled water systems . It allows an integration and co-ordination of the working mode between units and the main components , enabling improved efficiencies and performance at partial loads or , in the unlikely event of failure , finding the best way to react and grant cooling continuity to the system .
Combining all the technology optimisations , chilled water systems can significantly reduce the direct and indirect emissions . The following table can summarise an example of the results in London , where the system never fully works in direct expansion mode , thus granting excellent system efficiency and reducing costs .
Scaling with confidence
An example of how chilled water systems can achieve these benefits is in the case of Green Mountain , a Norwegian hydro-powered data centre where the thermal management system plays a big role . Green Mountain gained five megawatts of additional cooling capacity after the installation of Vertiv ’ s chilled water units , demonstrating how these systems , as part of a broader strategy , can facilitate sustainable data centre configurations .
Many hyperscale and colocation providers are now embracing the opportunity chilled water systems present , not only from a cost and speed of deployment perspective , but with sustainability front and centre . This needs to continue as we move into the next phase of the race for expanding capacity and improving the data centre sustainability . With such rapid expansion and increasing pressure to achieve net-zero , data centre providers must rely on new technologies to meet the requirements of both today and tomorrow . p
Chilled water systems are one of the first cooling technologies to apply low GWP refrigerants in data centre applications .
www . intelligentcio . com INTELLIGENTCIO AFRICA 69